(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
max(L(x)) → x
max(N(L(0), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
max(N(L(s(x)), L(s(y)))) →+ s(max(N(L(x), L(y))))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
max(L(x)) → x
max(N(L(0'), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
max(L(x)) → x
max(N(L(0'), L(y))) → y
max(N(L(s(x)), L(s(y)))) → s(max(N(L(x), L(y))))
max(N(L(x), N(y, z))) → max(N(L(x), L(max(N(y, z)))))
Types:
max :: L:N → 0':s
L :: 0':s → L:N
N :: L:N → L:N → L:N
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_L:N2_0 :: L:N
gen_0':s3_0 :: Nat → 0':s
gen_L:N4_0 :: Nat → L:N
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
max
(8) Obligation:
TRS:
Rules:
max(
L(
x)) →
xmax(
N(
L(
0'),
L(
y))) →
ymax(
N(
L(
s(
x)),
L(
s(
y)))) →
s(
max(
N(
L(
x),
L(
y))))
max(
N(
L(
x),
N(
y,
z))) →
max(
N(
L(
x),
L(
max(
N(
y,
z)))))
Types:
max :: L:N → 0':s
L :: 0':s → L:N
N :: L:N → L:N → L:N
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_L:N2_0 :: L:N
gen_0':s3_0 :: Nat → 0':s
gen_L:N4_0 :: Nat → L:N
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_L:N4_0(0) ⇔ L(0')
gen_L:N4_0(+(x, 1)) ⇔ N(L(0'), gen_L:N4_0(x))
The following defined symbols remain to be analysed:
max
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_L:N4_0(
+(
1,
n6_0))) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n6
0)
Induction Base:
max(gen_L:N4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
max(gen_L:N4_0(+(1, +(n6_0, 1)))) →RΩ(1)
max(N(L(0'), L(max(N(L(0'), gen_L:N4_0(n6_0)))))) →IH
max(N(L(0'), L(gen_0':s3_0(0)))) →RΩ(1)
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
max(
L(
x)) →
xmax(
N(
L(
0'),
L(
y))) →
ymax(
N(
L(
s(
x)),
L(
s(
y)))) →
s(
max(
N(
L(
x),
L(
y))))
max(
N(
L(
x),
N(
y,
z))) →
max(
N(
L(
x),
L(
max(
N(
y,
z)))))
Types:
max :: L:N → 0':s
L :: 0':s → L:N
N :: L:N → L:N → L:N
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_L:N2_0 :: L:N
gen_0':s3_0 :: Nat → 0':s
gen_L:N4_0 :: Nat → L:N
Lemmas:
max(gen_L:N4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_L:N4_0(0) ⇔ L(0')
gen_L:N4_0(+(x, 1)) ⇔ N(L(0'), gen_L:N4_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
max(gen_L:N4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
max(
L(
x)) →
xmax(
N(
L(
0'),
L(
y))) →
ymax(
N(
L(
s(
x)),
L(
s(
y)))) →
s(
max(
N(
L(
x),
L(
y))))
max(
N(
L(
x),
N(
y,
z))) →
max(
N(
L(
x),
L(
max(
N(
y,
z)))))
Types:
max :: L:N → 0':s
L :: 0':s → L:N
N :: L:N → L:N → L:N
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_L:N2_0 :: L:N
gen_0':s3_0 :: Nat → 0':s
gen_L:N4_0 :: Nat → L:N
Lemmas:
max(gen_L:N4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
gen_L:N4_0(0) ⇔ L(0')
gen_L:N4_0(+(x, 1)) ⇔ N(L(0'), gen_L:N4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
max(gen_L:N4_0(+(1, n6_0))) → gen_0':s3_0(0), rt ∈ Ω(1 + n60)
(16) BOUNDS(n^1, INF)